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Section A: Comparison of the Average Case and Observed Value Approaches 

 

A1  Marginal Effect Analysis to Determine the Difference Between the Average Effect 

Using the Observed Value Approach and the Effect for the Average Case 

 

Earlier we noted that because the probability density function (pdf), f, used for limited 

dependent variable models is nonlinear, the marginal effect for the average case is generally not 

equivalent to the average marginal effect calculated using the observed value approach (hereafter 

average effect).  We expressed this in equation (7a), k

n

i

ik x
n

xf  )(
1

)(
1




 .  We now show 

that where the average case is on the curve plays an important role in determining when the 

effect for the average case is greater than, equal to, or less than the average marginal effect 

calculated via the observed value approach.   

Using the law of large numbers, for a continuous pdf, we know that the average marginal 

effect, ki
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, converges in probability to ))((  xfE k .  By taking the second order 

Taylor series expansion of ))((  xfE k  around μβ, where μ is the population mean of the x’s, we 

obtain the following: 

 

 

(A1), 

where ψ represents the higher order terms.
1
  The first term on the right hand side of the above 

                                                 
1
 Note that the middle term of the second line drops out since 0)( xE .  Though in the 5

th
 edition 

of his classic textbook Greene (2003) suggested that the average case approach and the observed value 

approach are asymptotically equivalent, in the 6
th
 edition, Greene (2008) corrects that claim, providing a 

calculation similar to the one above (we work from the expected value of the average effect and use 

different notation).  We thank Professor Greene for pointing us to and sharing the relevant chapter with 

us.  Greene (2008) does not evaluate the implications of his equation in detail and suggests that the 
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result is simply the expected value of the marginal effect evaluated at the mean of all of the x’s; 

i.e., the effect for the average case.
2
  Thus, working with the second order approximation, by 

examining βk, the variance of xβ, and the second derivative of the pdf, we can determine whether 

the average marginal effect is substantively greater than or less than the effect for the average 

case.  Since Var(xβ) will always be positive, we need to consider βk and the second derivative of 

the pdf.  In terms of the substantive size of the average effect using the observed value approach 

versus the effect for the average case, it turns out that regardless of the sign of βk, whenever the 

second derivative of the pdf is negative, the average effect will be substantively smaller (i.e., 

smaller in absolute value) than the effect for the average case.
3
  Similarly, regardless of the sign 

of βk, when the second derivative of the pdf is positive, the average effect will be substantively 

larger than the effect for the average case.  The magnitude of the difference (up to the second 

order approximation) between the average effect and the effect for the average case will depend 

on the size of βk, the size of Var(xβ), and the value of the second derivative of the pdf evaluated 

at μβ.  To approximate when the second derivative of the pdf will be positive or negative we turn 

to an investigation of the probit pdf and logit pdf.     

Using the probit pdf we can rewrite the equation above as: 

                                                                                                                                                             
differences between the two approaches are likely to be small.  Contrary to that suggestion, our analysis 

in this section and our examples using NES data and Monte Carlo simulations show that substantial 

differences can result.  SI Section D Table 1(see below) reports results from Monte Carlo simulations that 

provide additional evidence that results from the average case approach and observed value approach do 

not converge in large samples. 
2
 That is, using the law of large numbers and the continuous pdf, )(  xfk converges in probability to

)( fk . 
3
 This is obvious for βk >0 because the average effect (which will be positive by virtue of βk being 

positive) will equal the effect for the average case, which is also positive (since βk > 0), plus a negative 

number, resulting in an average effect that is less than the effect for the average case. When βk is negative, 

then the average effect (which is negative because βk < 0) will equal a negative number (the effect for the 

average case is negative since βk < 0) plus a positive number resulting in a smaller negative number (i.e. a 

substantively smaller effect). 
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Since )(  is always positive, the second derivative of the probit pdf, )1))((( 2  , is 

negative when -1 < μβ < 1 (where the pdf is concave), zero at μβ = -1 or μβ = 1, and positive 

otherwise (where the pdf is convex).  We get a clearer picture of when this occurs by 

transforming various values of μβ into probabilities.  That is, by considering the probability of 

success associated with various values of μβ; or, in other words, evaluating where the average 

case is on the curve.  SI Section A Figure 1 plots the second derivative of the probit pdf by the 

probability of success for the average case.  The figure shows that the second derivative of the 

probit pdf is negative across most of the range of the predicted probabilities, from 0.1587 to 

0.8413.
4
  Thus, only when the probability of success for the average case is in the tails will the 

average effect using the observed value approach be substantively larger than the effect for the 

average case.  As noted earlier, the size of the difference depends on the size of βk, the size of 

Var(xβ), and the value of the second derivative of the probit pdf; as shown in SI Section A 

Figure 1, the absolute value of the second derivative varies across the range of predicted 

probabilities.
5
  

It is important to note that the above analysis has assumed that the higher order terms 

play a small role.  Our investigation of the higher order terms indicated that there were too many 

                                                 
4
 As we discuss at the end of this section, these values are best viewed as approximations. 

5
 The general conclusions derived for probit also hold for logit, though the second derivative of the logit 

pdf is negative over a slightly different range of predicted probabilities, from 0.2113 to 0.7887.  Note that 

part of the second derivative of the logit pdf contains the term 3
k .  The value of βk does not change 

where the second derivative is positive, negative, or zero, subject to rounding error.  When βk is positive, 

though the density changes, the second derivative is positive and negative over the same range of 

predicted probabilities regardless of the value of βk.  When βk is negative, the series when plotted will be a 

reflection over the x-axis, and though the density will change, again, the second derivative will be 

positive or negative over the same range of values regardless of the value of βk.  Note that when βk is 

negative, the second derivative will be negative from p = 0.2113 to p = 0.7887, but the average effect and 

the effect for the average case will also be negative resulting in an average effect that is substantively 

smaller than the effect for the average case (i.e. smaller in absolute value). 
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unknown quantities to provide further insight.  That said, the pdfs considered here are bell-

shaped, and the marginal effects are proportional to the pdf, so the second order approximation 

will be reasonable across most of the range of predicted probabilities.  Moreover, our Monte 

Carlo simulations (see section 5) provide results consistent with the expectations from the second 

order approximation.  Nonetheless, we err on the side of caution and suggest the values over 

which the effect for the average case is greater than or less than the average effect, presented 

above and subsequently, are best viewed as approximations, though ones we believe are quite 

good.  As we argued in the main text, though the comparison of the results from the two 

approaches is interesting, the primary argument for use of the observed value approach is 

theoretical.  

SI Section A Figure 1.  Second Derivative of the Probit pdf by the Probability of Success for 

the Average Case 
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A2  Discrete Difference Analysis 

The analysis of the discrete differences can proceed along similar lines.  Start with the 

following equation for the average effect using the observed value approach (hereafter average 

effect) of a change in xk from xk = d to xk = c, holding all other independent variables, x~k, at their 

observed values: 

 ));,();,((
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 (A3a). 

Separating out the values of xk that represent the manipulation of interest and βk from the rest of 

the x’s and β’s, this can be rewritten as follows: 
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 (A3b), 

where β~k represents all of the coefficients that are not the coefficient on the variable of interest, 

βk.  Using the law of large numbers, relying on the continuity of F, taking the expectation, and 

using a second order Taylor series expansion around μβ with xk set to values of c and d gives us 

the 

followin

g: 

 

 

 

 

 

 

 

 

(A4). 

 

 

As was the case with the marginal effects, the average effect derived from the discrete 

differences is equal to the effect for the average case plus additional terms.  The key to 
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evaluating the substantive difference between the average effect and the effect for the average 

case involves the difference between the second derivative of the cdf evaluated at kkk c ~~

and kkk d ~~ .   

Compared to the marginal effects, there are more moving parts, so to speak, so 

determining where this difference is positive and negative is more involved than the analysis of 

the marginal effects.  SI Section A Figure A2 considers a move from xk = 0 to xk = 1, as might be 

the case for the analysis of the effect of a dummy variable, for various values of βk for the probit 

cdf across the range of possible initial probabilities of success when xk = 0.  Though βk plays a 

larger role here, as was true for the marginal effects, the second term of the Taylor series 

expansion for the effect using the discrete differences is negative over most of the range of 

possible initial probabilities of success; i.e., across most of the range of initial probabilities of 

success, the effect for the average case will be larger than the average effect.  Although we 

provide an approximation for several values of β for a common scenario, our general conclusion 

is that the features of the data play too much of a role to draw firm conclusions regarding when 

the effects estimated from the average case approach will be greater than or less than the effects 

estimated from the observed value approach. 
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SI Section A Figure A2. Difference in the Second Derivative of the Probit CDF Changing 

From xk = 0 to xk = 1 for Various Values of βk by the Probability of Success for the Average 

Case When xk = 0 
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Section B: NES Results 

 

SI Section B Table 1. Probability Of Voting For George W. Bush vs. John Kerry In 2004 

 
Log likelihood = -60.14, Pseudo R

2
 = 0.781 

Number of observations = 383 

 

Notes: 

Data are from the 2004 NES, using respondents who first answered the standard turnout 

question.  The variables are coded as follows: 

 

Retrospective Economic Evaluations: -1 = Much Worse; -0.5 = Somewhat Worse; 0 = Same;  

0.5 = Somewhat Better; 1 = Much Better 

 

Party Identification: 0 = Strong Democrat; 1 = Weak Democrat; 2 = Independent Democrat;  

3 = Independent; 4 = Independent Republican; 5 = Weak Republican; 6 = Strong Republican 

 

Approval of Handling of Iraq War: 0 = Disapprove Strongly; 0.33 = Disapprove Not Strongly; 

0.66 = Approve Not Strongly; 1 = Approve Strongly 

 

Ideology: 1 = Extremely Liberal; 2 = Liberal; 3 = Slightly Liberal; 4 = Moderate;  

5 = Slightly Conservative; 6 = Conservative; 7 = Extremely Conservative 

 

White: 1 = white, 0 = other 

 

Female: 1 = female, 0 = male 

 

Age: years, 18-90 

 

Education: 1 = 0 - 8 Years; 2 = High School; No Degree; 3= High School Degree;  

4 =Some College, No Degree; 5 = Assoc. Degree; 6 = College Degree; 7 =Advanced Degree 

 

Income: 1-23 where 1 = less than $2,999 and 23 = $120,000 + 

 

Variable Coefficient Std. Err. p value

Constant -2.611 0.894 0.004

Retrospective Economic Evaluations 0.871 0.273 0.001

Party Identification 0.583 0.087 0.000

Approval of Handling of Iraq War 2.130 0.380 0.000

Ideology 0.181 0.136 0.183

White 0.091 0.308 0.768

Female -0.081 0.259 0.756

Age in years -0.004 0.008 0.670

Education -0.076 0.103 0.459

Income 0.014 0.027 0.597
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SI Section B Table 2.  Predicted Probability of Voting for George W. Bush vs. John Kerry 

in 2004, Using the Average Case and Observed Value Approaches, for Variables Not 

Shown in Figure 1. 

 

  
 

Notes: 

Data are from the 2004 NES, using respondents who first answered the standard turnout 

question.  Results are based on estimates from the model reported in SI Section B Table 1. 

1. Predicted probabilities are computed by setting all other independent variables at their mean 

values. 

2. Predicted probabilities are computed by setting all other independent variables at their 

observed values, using the coefficients in SI Section B Table 1. 

 

 

 

 

 

 

 

 

Variables and Categories

Average 

Case 

Approach
1

Observed 

Value 

Approach
2

Ideology

Extremely Liberal 0.39 0.46

Liberal 0.46 0.47

Slightly Liberal 0.53 0.49

Moderate 0.60 0.51

Slightly Conservative 0.67 0.52

Conservative 0.73 0.54

Extremely Conservative 0.79 0.56

White

White 0.60 0.51

Not white 0.57 0.50

Female

Female 0.60 0.51

Male 0.63 0.51

Age

20 years old 0.64 0.52

48 years old 0.60 0.51

65 years old 0.58 0.51

Income

$22,000-$24,999 0.57 0.50

$40,000-$44,999 0.60 0.51

$70,000-$79,999 0.62 0.51

Predicted Probabilities
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SI Section B Table 3. Statistical Simulation Results for Predicted Probability of Voting for 

George W. Bush vs. John Kerry in 2004, Using the Observed Value Approach, with 95% 

Confidence Intervals  

 
 

Notes: 

Data are from the 2004 NES, using respondents who first answered the standard turnout 

question.  Results are from statistical simulation and thus differ slightly from results reported in 

SI Section B Table 2. 

Predicted 

Probability

Lower 

Bound

Upper 

Bound

Predicted 

Probability

Lower 

Bound

Upper 

Bound

Much Worse 0.44 0.38 0.49 White 0.51 0.49 0.54

Somewhat Worse 0.49 0.45 0.52 Not White 0.51 0.46 0.56

Same 0.53 0.50 0.57

Somewhat Better 0.59 0.53 0.65

Much Better 0.64 0.55 0.75 Female 0.51 0.48 0.54

Male 0.52 0.48 0.55

Strong Democrat 0.24 0.13 0.34

Weak Democrat 0.34 0.25 0.41 20 years old 0.52 0.48 0.57

Independent Democrat 0.44 0.38 0.50 48 years old 0.51 0.49 0.54

Independent 0.56 0.50 0.61 65 years old 0.51 0.47 0.54

Independent Republican 0.67 0.59 0.75

Weak Republican 0.78 0.68 0.88

Strong Republican 0.87 0.76 0.96 $22,000-$24,999 0.51 0.47 0.54

$40,000-$44,999 0.51 0.49 0.54

$70,000-$79,999 0.52 0.49 0.55

Disapprove Strongly 0.42 0.36 0.47

Disapprove Not Strongly 0.53 0.49 0.57

Approve Not Strongly 0.63 0.57 0.71

Approve Strongly 0.74 0.64 0.86

0 - 8 Years 0.54 0.47 0.62

High School, No Degree 0.53 0.48 0.59

High School Degree 0.52 0.49 0.56

Some College, No Degree 0.52 0.49 0.54

Assoc. Degree 0.51 0.48 0.54

College Degree 0.50 0.47 0.54

Advanced Degree 0.50 0.45 0.55

Extremely Liberal 0.46 0.35 0.54

Liberal 0.47 0.40 0.53

Slightly Liberal 0.49 0.44 0.53

Moderate 0.51 0.48 0.54

Slightly Conservative 0.53 0.49 0.57

Conservative 0.55 0.49 0.62

Extremely Conservative 0.57 0.48 0.68

Ideology

White

Female

Age

Income

Handling of the Iraq War

Education

Confidence Interval

Retrospective Economic 

Evaluation

Party Identification

Confidence Interval
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SI Section B Table 4. Predicted Effect (First Difference) of Changes in Select Variables on 

the Probability of Voting for George W. Bush vs. John Kerry in 2004, Using the Observed 

Value Approach, with 95% Confidence Intervals  

 
 

Notes: 

Data are from the 2004 NES, using respondents who first answered the standard turnout 

question.  Results are from statistical simulation.  All changes originate from the mean value of 

the variable of interest. 

Effect

Lower 

Bound

Upper 

Bound

Much Worse -0.09 -0.16 -0.03

Somewhat Worse -0.05 -0.08 -0.02

Somewhat Better 0.05 0.02 0.09

Much Better 0.11 0.03 0.20

Strong Democrat -0.32 -0.43 -0.20

Weak Democrat -0.22 -0.31 -0.13

Independent Democrat -0.11 -0.16 -0.07

Independent Republican 0.12 0.07 0.16

Weak Republican 0.23 0.15 0.30

Strong Republican 0.32 0.22 0.39

Disapprove Strongly -0.10 -0.16 -0.06

Approve Not Strongly 0.11 0.06 0.17

Approve Strongly 0.22 0.13 0.32

0 - 8 Years 0.03 -0.04 0.11

High School, No Degree 0.02 -0.03 0.08

High School Degree 0.01 -0.02 0.05

Some College, No Degree 0.01 -0.01 0.02

College Degree -0.01 -0.02 0.01

Advanced Degree -0.01 -0.05 0.02

Change in Handling of the Iraq War 

from Disapprove Not Strongly to:

Change in Education from Assoc. 

Degree to:

Confidence Interval

Change in Retrospective Economic 

Evaluation from Same to:

Change in Party Identification from 

Independent to:
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Section C: Sample Stata Code (Version 10)
6
 

 

In this appendix we lay out the basic code for computing predicted probabilities and 

marginal effects using the observed value approach.  We use a simple probit model where y 

represents the dependent variable, x1 is a binary independent variable, and x2 is a continuous 

independent variable.  In the first subsection, all Stata commands are presented in bold type.  We 

also include tips for other models, some of which require one to draw additional parameters. 

Stata Code for First Differences and Marginal Effects 

 

To get the predicted probability of success for each observation in the sample, after 

running probit y x1 x2, one can simply run predict p if e(sample).  The “if e(sample)” portion 

of the code simply instructs Stata calculate the prediction only for observations on which the 

model is run.  Running sum p will give the average probability of success.  This is usually not all 

that informative but is very useful as a check on user generated code to calculate the same 

quantity and quantities that build from this code.  To generate the predicted probability of 

success for each case, i.e. Ф(xβ), using one’s own code run:  

gen pmycode = normal(_b[_cons] + _b[x1]*x1 + _b[x2]*x2) if e(sample) 

This code follows the approach advocated in the Stata manuals, with _b[_cons] representing the 

value of the constant that Stata stores in memory, _b[x1] representing the coefficient on x1 that 

Stata stores, and _b[x2] representing the coefficient on x2 that Stata stores in memory.  One 

could type in the values of the estimated coefficients but this code is more general and flexible. 

As a check, running gen difference = p – pmycode and then sum pmycode difference should 

reveal that the results for pmycode are identical to those for p and thus, the difference variable 

takes on a value of 0 for each case in the analysis.  If this is not the case then something is wrong 

with the code and you should not move forward until the problem is fixed.   

                                                 
6
 The margins command introduced in Stata 11 can also be used in many circumstances.  
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To get the estimated first difference for x1 setting x2 to its observed values we do the 

following.  First, generate the predicted probability of success when x1 is set to 1 by running: 

gen px1_1 = normal(_b[_cons] + _b[x1]*1 + _b[x2]*x2) if e(sample) 

As can be seen, this involves just a minor modification of the code used to generate the pmycode 

variable.  Second, generate the predicted probability of success when x1 is set to 0 by running: 

gen px1_0 = normal(_b[_cons] + _b[x1]*0 + _b[x2]*x2) if e(sample) 

To get the effect for each observation run: 

gen effectx1 = px1_1 – px1_0 

To get the average of the respective predicted probabilities and the average effect run: 

sum px1_1 px1_0 effectx1 

First differences for x2 can be generated similarly.  But since x2 is continuous one might want to 

generate the marginal effect for x2 for each observation; this can be obtained by running: 

gen margeffx2 = normalden(_b[_cons] + _b[x1]*x1 + _b[x2]*x2)*_b[x2] if e(sample) 

To get the average marginal effect of x2 simply run sum margeffx2.  The same basic set up can 

be used for other models and more complex model specifications. 

Stata Code for Implementing the Observed Value Approach Via Simulation 

Although, with additional code, Clarify can be used to implement the observed value 

approach for some quantities of interest, the codebook and default settings implement the 

average case approach; the numerous articles in our content analysis that used Clarify noted 

using the average case approach.  We found that writing code in Clarify to implement the 

observed value approach was more difficult and allowed less flexibility in terms of what could 

be calculated and how it could be saved than starting from scratch and combining the observed 
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value approach and statistical simulation.  Sticking with the simple probit model from above, we 

offer the following sample Stata code. 

*0) Set the memory to 1000 megabytes and number of variables to 32,767. 

 

set mem 1000m 

set maxvar 32767 

 

*1) Open the data and then run the model. 

 

probit y x1 x2 

 

*1a) Drop observations that are not in the model so that the quantities of interest are /// 

not calculated for those observations. 

 

gen keep = 1 if e(sample) 

drop if keep ~=1 

 

*1b) Save the data as a temporary file named temp, replacing any previous file names temp. 

 

save temp, replace 

 

*2a) Create a mean vector for the coefficients and covariance matrix, draw 1000 sets /// 

of coefficients from the multivariate normal using this info. 

**Note that that random number seed is set to 99 (chosen as it is Wayne Gretzky’s number) /// 

using the same seed is helpful for replication purposes. 

**The variable named b_x1 will contain the 1000 simulated coefficients for variable x1, /// 

the variable named b_x2 will contain the 1000 simulated coefficients for variable x2, /// 

and the variable named b_cons will contain the 1000 simulated coefficients for the constant term. 

**Note that you can name the coefficients anything as Stata does not recognize the name as /// 

meaningful, it just recognizes the order, which follows the order of the output./// 

So, the first variable specified will be the coefficient on the independent variable listed first /// 

and so on (be careful with the placement of the constant). 

**Note that this will temporarily clear the original data set and create a new data set with the /// 

simulated coefficients. 

 

set seed 99 

mat b = e(b) 

mat V = e(V) 

drawnorm b_x1 b_x2 b_cons, mean(b) cov(V) n(1000) clear 

 

*Examine the coefficients and check that they are close to the original estimates;  /// 

if not, something is wrong.  It is crucial to note that the variables need to be drawn in the /// 

same order in which they appear in the model output.  So, if one puts b_cons first Stata will /// 

treat this as the coefficient on b1.  The following command should help catch such errors. 
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sum b_x1 b_x2 b_cons 
 

*2b) Merge the original data set (stored as temp) into the data set containing the /// 

simulated coefficients. 

 

merge using temp 

 

*3)  For each simulated set of coefficients (this was set to 1000 in step 2a above) create a ///  

variable that contains the quantity of interest for each observation for each set of simulated /// 

coefficients (i.e. loop over the 1000 sets of simulated coefficients). 

**For each quantity of interest, this creates 1000 new variables with values for each /// 

observation in the data set.  They are structured as follows. 

**Row 1 for the first new variable contains the quantity of interest using values for /// 

the first observation and the first set of simulated coefficients. 

**Row n for the first new variable contains the quantity of interest using values for /// 

the nth observation and the first set of simulated coefficients. 

**Row 1 for the second new variable contains the quantity of interest using values for /// 

the first observation and the second set of simulated coefficients. 

**Row n for the second new variable contains the quantity of interest using values for /// 

the nth observation and the second set of simulated coefficients. 

**This process continues for each of the 1000 simulated sets of coefficients. 

 

**Then the mean of each of the new variables for a given quantity of interest is stored in a /// 

new variable with a name ending in _mean. 

**Row 1 for this new variable ending in _mean contains the mean across all of the /// 

observations using the first set of simulated coefficients /// 

(i.e. the mean of the first new variable described above). 

**Row 2 for this new variable ending in _mean contains the mean across all of the /// 

observations using the second set of simulated coefficients /// 

(i.e. the mean of the second new variable described above). 

**This continues through row 1000 which contains the mean across all of the observations /// 

using the thousandth set of simulated coefficients /// 

(i.e. the mean of the thousandth new variable described above). 

 

**3a) Calculate the predicted probability of success with all variables set to their /// 

observed values. 

*Start by creating a variable named p_mean that is set to a missing value and is then filled /// 

in after each of the 1000 variables are created.  

*Next, calculate the quantity of interest for each observation and each set of simulated /// 

coefficients, looping over the 1000 sets of simulated coefficients. 

*Finally, fill in the p_mean variable with the mean across all observations from each set of /// 

simulated coefficients. 

 

 gen p_mean = . 

 forvalues i = 1/1000 { 
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    gen p_`i' = normal(b_cons[`i'] + x1*b_x1[`i'] + x2*b_x2[`i'])  

    summarize p_`i', meanonly 

    replace p_mean = r(mean) in `i' 

} 

 

**Note that the p_1 through p_1000 variables are not needed after p_mean is filled in. /// 

To save space these can be dropped by running drop p_1-p_1000.  The same logic applies /// 

for the intermediate variables calculated in subsequent commands. 

 

**3b) Calculate the predicted probability of success when x1=1 and x2 is set to its ///  

observed values. 

*Start by creating a variable named px1_1_mean that is set to a missing value and is then /// 

filled in after each of the 1000 variables are created.  

*Next, calculate the quantity of interest for each observation and each set of simulated /// 

coefficients, looping over the 1000 sets of simulated coefficients. 

*Finally, fill in the px1_1_mean variable with the mean across all observations from each set /// 

of simulated coefficients. 

 

 gen px1_1_mean = . 

 forvalues i = 1/1000 { 

   gen px1_1_`i' = normal(b_cons[`i'] + 1*b_x1[`i'] + x2*b_x2[`i'])  

   summarize px1_1_`i', meanonly 

   replace px1_1_mean = r(mean) in `i' 

} 

 

**3c) Calculate the predicted probability of success when x1=0 and x2 is set to its /// 

observed values. 

*Start by creating a variable named px1_0_mean that is set to a missing value and is then /// 

filled in after each of the 1000 variables are created.  

*Next, calculate the quantity of interest for each observation and each set of simulated /// 

coefficients, looping over the 1000 sets of simulated coefficients. 

*Finally, fill in the px1_0_mean variable with the mean across all observations from each set /// 

of simulated coefficients. 

 

 gen px1_0_mean = . 

 forvalues i = 1/1000 { 

   gen px1_0_`i' = normal(b_cons[`i'] + 0*b_x1[`i'] + x2*b_x2[`i'])  

   summarize px1_0_`i', meanonly 

   replace px1_0_mean = r(mean) in `i' 

} 

 

**3d) Calculate the effect of x1 when moving from x1 = 0 to x1 = 1 (i.e. the first difference). 

*Start by creating a variable named effectx1_mean that is set to a missing value and is then /// 

filled in after each of the 1000 variables are created. 

*Next, calculate the quantity of interest for each observation and each set of simulated /// 

coefficients, looping over the 1000 sets of simulated coefficients. 
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*Finally, fill in the effectx1_mean variable with the mean across all observations from each ///  

set of simulated coefficients. 

 

 gen effectx1_mean = . 

 forvalues i = 1/1000 { 

   gen effectx1_`i' = px1_1_`i' - px1_0_`i' 

   summarize effectx1_`i', meanonly 

   replace effectx1_mean = r(mean) in `i'  

} 

*Note that this could also be done by creating a new variable equal to px1_1_mean minus 

px1_0_mean. 

 

**3e) Calculate the marginal effect of x2, when x1 is set to its observed values. 

*Start by creating a variable named margeffx2_mean that is set to a missing value and is then /// 

filled in after each of the 1000 variables are created. 

*Next, calculate the quantity of interest for each observation and each set of simulated /// 

coefficients, looping over the 1000 sets of simulated coefficients. 

*Finally, fill in the margeffx2_mean variable with the mean across all observations from each /// 

set of simulated coefficients. 

 

gen margeffx2_mean = . 

 forvalues i = 1/1000 { 

   gen margeffx2_`i' = normalden(b_cons[`i'] + x1*b_x1[`i'] + x2*b_x2[`i'])*b_x2[`i'] 

   summarize margeffx2_`i', meanonly 

   replace margeffx2_mean = r(mean) in `i'  

} 

 

*4) For each of the quantities of interest report the mean across the 1000 sets of simulated /// 

coefficients. 

 

sum p_mean px1_1_mean px1_0_mean effectx1_mean margeffx2_mean 

 

*5) For each of the quantities of interest report the 95% confidence intervals across the 1000 /// 

sets of simulated coefficients. 

 

centile p_mean px1_1_mean px1_0_mean effectx1_mean margeffx2_mean, centile(2.5 97.5) 

 

Tips for Other Models 

 

Depending on the model choice, researchers might need to simulate additional parameter 

estimates. The best and safest way to see these estimates is to run the vce command after running 

the model in Stata.  Doing so will present the variance-covariance matrix of the most recently 

run model.  For example, it will include cutpoint estimates after an ordered model, which are 

necessary for estimating the predicted effects and thus need to be simulated.  The parameters 

need to be specified in the drawnorm line.  For a 4-category ordered dependent variable and 2 

independent variables the command would be:  
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drawnorm b_x1 b_x2 cut1 cut2 cut3, mean(b) cov(V) n(1000) clear).  

 

Finally, we offer a reminder that it is crucial to draw the parameters in the order in which they 

appear in the model output as Stata does not connect the name provided in the drawnorm line to 

the saved results.  Examples for a variety of models can be found at: 

http://www.bsos.umd.edu/gvpt/hanmer/ 
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Section D: Additional Monte Carlo Simulation Results 

 

Appendix D Table 1 shows that whether one uses a sample of 1,000 or 100,000 the results from 

the average case and observed value approaches differ.  As can be seen, the results when n = 

1,000 are nearly identical to those when n = 100,000. 

 

Appendix D Table 1.  Monte Carlo Simulations Showing That the Average Case and 

Observed Value Approaches Do Not Converge as the Sample Size Increases (Using True 

Models)
1
 

 

Panel a. Marginal Effects for x2 and x3 for True Models 

 
 

 

Panel b: Predicted Probability of Success Across Values of x1 for True Models 

 
 

Notes: 

1. True model is: y* = β0 + β1x1 +  β2x2 + β3x3 + e, where x1 has three categories and x2 and x3 

are continuous. 

2. Marginal effects are computed by setting all other independent variables to their sample 

means. 

3. Marginal effects are computed by setting all other independent variables to their observed 

values in the sample. 

4. Predicted probabilities are computed by setting x1 to its respective values and all other 

independent variables to their sample means. 

5. Predicted probabilities are computed by setting x1 to its respective values and all other 

independent variables to their observed values. 

 
 

 

Model:

Variable

Average 

Case
2

Observed 

Values
3

Average 

Case
2

Observed 

Values
3

Average 

Case
2

Observed 

Values
3

Average 

Case
2

Observed 

Values
3

x2 0.400 0.230 0.399 0.230 0.076 0.135 0.078 0.135

x3 0.201 0.115 0.200 0.115 0.038 0.067 0.039 0.067

y*  = -1 + -1x 1   +  1x 2   + 0.5x 3  + e y*  = -2.8 + -1x 1   +  1x 2   + 0.5x 3  + e

Sample Size = 1,000

Sample Size = 

100,000

Sample Size = 

100,000Sample Size = 1,000

Model:

Variable Category

Average 

Case
4

Observed 

Values
5

Average 

Case
4

Observed 

Values
5

Average 

Case
4

Observed 

Values
5

Average 

Case
4

Observed 

Values
5

x1 1 0.841 0.747 0.841 0.748 0.210 0.297 0.212 0.297

2 0.500 0.500 0.500 0.500 0.035 0.115 0.036 0.115

3 0.158 0.252 0.159 0.253 0.003 0.031 0.003 0.031

y*  = -2.8 + -1x 1   +  1x 2   + 0.5x 3  + e

Sample Size = 1,000

Sample Size = 

100,000 Sample Size = 1,000

Sample Size = 

100,000

y*  = -1 + -1x 1   +  1x 2   + 0.5x 3  + e


